Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Environ Dev Sustain ; : 1-12, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: covidwho-2232155

RESUMEN

There has been a long-lasting impact of the lockdown imposed due to COVID-19 on several fronts. One such front is climate which has seen several implications. The consequences of climate change owing to this lockdown need to be explored taking into consideration various climatic indicators. Further impact on a local and global level would help the policymakers in drafting effective rules for handling challenges of climate change. For in-depth understanding, a temporal study is being conducted in a phased manner in the New Delhi region taking NO2 concentration and utilizing statistical methods to elaborate the quality of air during the lockdown and compared with a pre-lockdown period. In situ mean values of the NO2 concentration were taken for four different dates, viz. 4th February, 4th March, 4th April, and 25th April 2020. These concentrations were then compared with the Sentinel (5p) data across 36 locations in New Delhi which are found to be promising. The results indicated that the air quality has been improved maximum in Eastern Delhi and the NO2 concentrations were reduced by one-fourth than the pre-lockdown period, and thus, reduced activities due to lockdown have had a significant impact. The result also indicates the preciseness of Sentinel (5p) for NO2 concentrations.

2.
IEEE Access ; 8: 186932-186938, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-1528293

RESUMEN

COVID-19 cases in India have been steadily increasing since January 30, 2020 and have led to a government-imposed lockdown across the country to curtail community transmission with significant impacts on societal systems. Forecasts using mathematical-epidemiological models have played and continue to play an important role in assessing the probability of COVID-19 infection under specific conditions and are urgently needed to prepare health systems for coping with this pandemic. In many instances, however, access to dedicated and updated information, in particular at regional administrative levels, is surprisingly scarce considering its evident importance and provides a hindrance for the implementation of sustainable coping strategies. Here we demonstrate the performance of an easily transferable statistical model based on the classic Holt-Winters method as means of providing COVID-19 forecasts for India at different administrative levels. Based on daily time series of accumulated infections, active infections and deaths, we use our statistical model to provide 48-days forecasts (28 September to 15 November 2020) of these quantities in India, assuming little or no change in national coping strategies. Using these results alongside a complementary SIR model, we find that one-third of the Indian population could eventually be infected by COVID-19, and that a complete recovery from COVID-19 will happen only after an estimated 450 days from January 2020. Further, our SIR model suggests that the pandemic is likely to peak in India during the first week of November 2020.

3.
Sci Total Environ ; 806(Pt 2): 150639, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1442557

RESUMEN

Mathematical models of different types and data intensities are highly used by researchers, epidemiologists, and national authorities to explore the inherently unpredictable progression of COVID-19, including the effects of different non-pharmaceutical interventions. Regardless of model complexity, forecasts of future COVID-19 infections, deaths and hospitalization are associated with large uncertainties, and critically depend on the quality of the training data, and in particular how well the recorded national or regional numbers of infections, deaths and recoveries reflect the the actual situation. In turn, this depends on, e.g., local test and abatement strategies, treatment capacities and available technologies. Other influencing factors including temperature and humidity, which are suggested by several authors to affect the spread of COVID-19 in some countries, are generally only considered by the most complex models and further serve to inflate the uncertainty. Here we use comparative and retrospective analyses to illuminate the aggregated effect of these systematic biases on ensemble-based model forecasts. We compare the actual progression of active infections across ten of the most affected countries in the world until late November 2020 with "re-forecasts" produced by two of the most commonly used model types: (i) a compartment-type, susceptible-infected-removed (SIR) model; and (ii) a statistical (Holt-Winters) time series model. We specifically examine the sensitivity of the model parameters, estimated systematically from different subsets of the data and thereby different time windows, to illustrate the associated implications for short- to medium-term forecasting and for probabilistic projections based on (single) model ensembles as inspired by, e.g., weather forecasting and climate research. Our findings portray considerable variations in forecasting skill in between the ten countries and demonstrate that individual model predictions are highly sensitive to parameter assumptions. Significant skill is generally only confirmed for short-term forecasts (up to a few weeks) with some variation across locations and periods.


Asunto(s)
COVID-19 , Predicción , Humanos , Estudios Retrospectivos , SARS-CoV-2 , Estaciones del Año
4.
Sci Rep ; 11(1): 8363, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1189289

RESUMEN

The new COVID-19 coronavirus disease has emerged as a global threat and not just to human health but also the global economy. Due to the pandemic, most countries affected have therefore imposed periods of full or partial lockdowns to restrict community transmission. This has had the welcome but unexpected side effect that existing levels of atmospheric pollutants, particularly in cities, have temporarily declined. As found by several authors, air quality can inherently exacerbate the risks linked to respiratory diseases, including COVID-19. In this study, we explore patterns of air pollution for ten of the most affected countries in the world, in the context of the 2020 development of the COVID-19 pandemic. We find that the concentrations of some of the principal atmospheric pollutants were temporarily reduced during the extensive lockdowns in the spring. Secondly, we show that the seasonality of the atmospheric pollutants is not significantly affected by these temporary changes, indicating that observed variations in COVID-19 conditions are likely to be linked to air quality. On this background, we confirm that air pollution may be a good predictor for the local and national severity of COVID-19 infections.


Asunto(s)
COVID-19/patología , Contaminantes Ambientales/análisis , Contaminantes Atmosféricos/análisis , COVID-19/epidemiología , COVID-19/virología , Humanos , Modelos Teóricos , Óxido Nítrico/análisis , Ozono/análisis , Pandemias , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Dióxido de Azufre/análisis
5.
Agricultural Systems ; : 103027, 2020.
Artículo en Inglés | Web of Science | ID: covidwho-967582

RESUMEN

When on March 24, 2020 the Government of India ordered a complete lockdown of the country as a response to the COVID-19 pandemic, it had serious unwanted implications for farmers and the supply chains for agricultural produce. This was magnified by the fact that, as typically in developing countries, India's economy is strongly based on farming, industrialization of its agricultural systems being only modest. This paper reports on the various consequences of the COVID-19 lockdown for farming systems in India, including the economy, taking into account the associated emergency responses of state and national governments. Combining quantitative and qualitative sources of information with a focus on the Indian state of Uttar Pradesh, including expert elicitation and a survey of farmers, the paper identifies and analyzes the different factors that contributed to the severe disruption of farming systems and the agricultural sector as a whole following the lockdown. Among other issues, our study finds that the lack of migrant labor in some regions and a surplus of workers in others greatly affected the April harvest, leading to a decline in agricultural wages in some communities and an increase in others, as well as to critical losses of produce. Moreover, the partial closure of rural markets and procurement options, combined with the insufficient supply of products, led to shortages of food supplies and dramatically increased prices, which particularly affected urban dwellers and the poor. We argue that the lessons learned from the COVID-19 crisis could fuel the development of new sustainable agro-policies and decision-making in response not only to future pandemics but also to the sustainable development of agricultural systems in India and in developing countries in general.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA